Application of reinforcement learning to the game of Othello
نویسندگان
چکیده
Operations research and management science are often confronted with sequential decision making problems with large state spaces. Standard methods that are used for solving such complex problems are associated with some difficulties. As we discuss in this article, these methods are plagued by the so-called curse of dimensionality and the curse of modelling. In this article, we discuss reinforcement learning, a machine learning technique for solving sequential decision making problems with large state spaces. We describe how reinforcement learning can be combined with a function approximation method to avoid both the curse of dimensionality and the curse of modelling. To illustrate the usefulness of this approach, we apply it to a problem with a huge state space—learning to play the game of Othello. We describe experiments in which reinforcement learning agents learn to play the game of Othello without the use of any knowledge provided by human experts. It turns out that the reinforcement learning agents learn to play the game of Othello better than players that use basic strategies. 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
Reinforcement Learning for Penalty Avoiding Policy Making and its Extensions and an Application to the Othello Game
The purpose of reinforcement learning system is to learn optimal policies in general. However, from the engineering point of view, it is useful and important to acquire not only optimal policies, but also penalty avoiding policies. In this paper, we are focused on formation of penalty avoiding policies based on the Penalty Avoiding Rational Policy Making algorithm [1]. In applying the algorithm...
متن کاملStrategy Acquisition for the Game "Othello" Based on Reinforcement Learning
This article discusses automatic strategy acquisition for the game \Othello" based on reinforcement learning. In our approach, two computer players initially know only the game rules, but they become relatively stronger after playing several thousands of games against each other. In each game, the players re ne the evaluation function for the game state, which is achieved in a reinforcement lea...
متن کاملAn Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...
متن کاملReinforcement Learning in 2-players Games
The purpose of reinforcement learning system is to learn an optimal policy in general. However, in 2players games such as the othello game, it is important to acquire a penalty avoiding policy. In this paper, we are focused on formation of penalty avoiding policies based on the Penalty Avoiding Rational Policy Making algorithm [2]. In applying it to large-scale problems, we are confronted with ...
متن کاملApplication of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling
The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches. In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques. Jump processes are applied to model different and complex situations in cyber games. Applying jump processes we propose some m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & OR
دوره 35 شماره
صفحات -
تاریخ انتشار 2008